Greedy low-rank algorithm for spatial connectome regression

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Greedy Approach for Low-Rank Matrix Recovery

We describe the Simple Greedy Matrix Completion Algorithm providing an efficient method for restoration of low-rank matrices from incomplete corrupted entries. We provide numerical evidences that, even in the simplest implementation, the greedy approach may increase the recovery capability of existing algorithms significantly.

متن کامل

Low rank Multivariate regression

We consider in this paper the multivariate regression problem, when the target regression matrix A is close to a low rank matrix. Our primary interest is in on the practical case where the variance of the noise is unknown. Our main contribution is to propose in this setting a criterion to select among a family of low rank estimators and prove a non-asymptotic oracle inequality for the resulting...

متن کامل

Greedy Learning of Generalized Low-Rank Models

Learning of low-rank matrices is fundamental to many machine learning applications. A state-ofthe-art algorithm is the rank-one matrix pursuit (R1MP). However, it can only be used in matrix completion problems with the square loss. In this paper, we develop a more flexible greedy algorithm for generalized low-rank models whose optimization objective can be smooth or nonsmooth, general convex or...

متن کامل

Spatial Design for Knot Selection in Knot-Based Low-Rank Models

‎Analysis of large geostatistical data sets‎, ‎usually‎, ‎entail the expensive matrix computations‎. ‎This problem creates challenges in implementing statistical inferences of traditional Bayesian models‎. ‎In addition,researchers often face with multiple spatial data sets with complex spatial dependence structures that their analysis is difficult‎. ‎This is a problem for MCMC sampling algorith...

متن کامل

Stochastic Low-Rank Kernel Learning for Regression

We present a novel approach to learn a kernelbased regression function. It is based on the use of conical combinations of data-based parameterized kernels and on a new stochastic convex optimization procedure of which we establish convergence guarantees. The overall learning procedure has the nice properties that a) the learned conical combination is automatically designed to perform the regres...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Journal of Mathematical Neuroscience

سال: 2019

ISSN: 2190-8567

DOI: 10.1186/s13408-019-0077-0